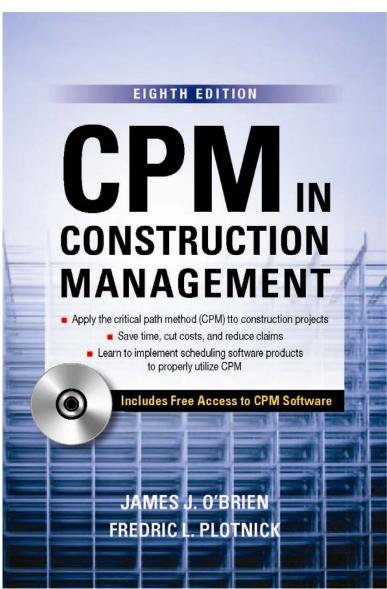
Evidence Issues in Forensic Use of CPM Scheduling

prepared by

Fredric L. Plotnick, Ph.D., Esq., P.E.

for the

THE FLORIDA BAR


FOR THE PUBLIC

MEMBER SERVICES

Curriculum Vitae

- Fredric L. Plotnick, Ph.D., Esq., P.E.
- Education 75 77 80 93 08
- Teaching Drexel Temple U of P
- Licensed PA NJ FL MD
- Bechtel Hill IUCS Fuller GATX
- EnProMaC 1983 present Engineering & Property Management Consultants, Inc.
- USN Guideline Specification, 1986 now UFGS
- CPM in Construction Management, 5th, 6th, 7th, 8th
- Contracts and the Legal Environment for Engineers & Architects, 7th
- Construction CPM Conference
- PSPE, ASCE, AACE, PMI, ...
- ABA•FC, PBA, NJSBA, FBA, ...
- also enjoys fishing

THE FLORIDA BAR

FOR THE PUBLIC

MEMBER SERVICES

This blog discusses CPM scheduling, engineering law and other aspects

Home • Blogs • The Next Generation

The Next Generation

PLOTNICK and the Florida Bar

FLA BAR JOURNAL • Pro Bono Publico v Pauperus DREXEL CIVE 571 • Forefront HASP Electronic Seal

ENR 2013 Fla SCt Reverses Course on Economic Loss Rule CCC Accredited by FLA BAR for Construction Certification Credits Today's Presentation

The Industrial Exemption

Prepared and Presented by Fredric L. Plotnick, Ph.D., Esq., P.E. This Activity is credited for 1 PDH (60 minutes) and has been approved for NY credit. Current Charge for this program is \$5

Enter NAME OF VIEWER

ENTER Viewer PE License Number

To return using your password to this course click HERE

Oranges, Apples and Pairs

November 14, 2013 No Comments

I have been away from my blog for too long. I don't know if it is writer's block or just being too busy. August was a couple of claims and trying to find time to catch a fish. September featured a presentation to the GAO on why they should consider my RDCPM protocol as part of a new metric to review CPM schedule. Let us continue the discussion on Schedule Risk, Measured Mile and Half Steps. Read on ...

of project management.

Schedule Risk, The Measured Mile and Half Steps

July 9, 2013 No Comments

Professional and technical association conference presentations are providing more detail in forensic analyses. This is a good thing. As to why, read on ...

Location-Based Scheduling and the Confluence of CPM and BIM

April 23, 2013 One Comment

Location Location Location. The confluence of CPM with BIM continues to bring additional benefits to the users of these tools. Read on ...

Fla. Supreme Court Reverses Course on Economic Loss: A

Must-Read for Designers

March 16, 2013 No Comments

Rarely will a practitioner live through a full swing of the pendulum of the expansion and retraction of a judicial doctrine. Read how the latest decision of the Florida Supreme Court again changes the legal landscape.

- How reliable is CPM to establish a claim of delay or disruption?
- Claims before CPM
- Claims after CPM
- Current State-of-the-Art
- Frye v Daubert
- Intrinsic Unreliability of CPM
- Daubert II
- Robinson Factor Analysis
- Analytical Gap Test
- Specific Flaws of this CPM
- All leading to ...

Pre-CPM Claims of Delay

• Generally, if two parties claim concurrent delays, the court will not try to unravel the factors involved and will disallow the claims by both parties. In United States vs. Citizens and Southern National Bank, 367 F. 2d 473 (1966), a subcontractor was able to show delay damages caused by the general contractor. However, the general contractor, in turn, was able to demonstrate that portions of the damages were caused by factors for which he was not responsible. In the absence of clear evidence separating the two claims, the court rejected both claims, stating:

"As the evidence does not provide any reasonable basis for allocating the additional costs among those contributing factors, we conclude that the entire claim should have been rejected."

Post-CPM Claims of Delay

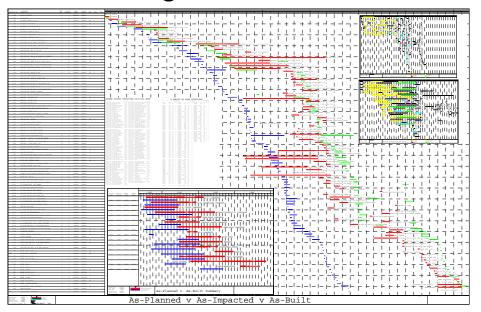
• The courts gave early recognition to the validity of CPM. In 1972 (Appeal of *Minmar Builders, Inc.* GSBCANo. 3430, 72-2 BOA), the court rejected a claim based on bar graph schedules, stating:

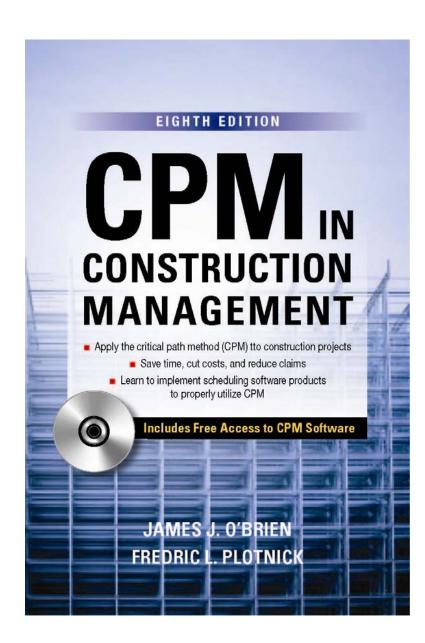
"The schedules were not prepared by the Critical Path Method (CPM) and, hence, are not probative as to whether any particular activity or group of activities was on the critical path or constituted the pacing element for the project."

- Also in 1972, a Missouri Court (Natkin & Co. v. Fuller. 347 F Supp 17) stated that bar charts did not "afford an overall coordinated schedule of the total work covered by the contract."
- An Illinois court (Pathman Construction Co. v. Hi-Way Electric Co. 65 Ill. App. ad 480, 382 N.E. 2d 453,460) in 1978 noted that

"technological advances and the use of computers to devise work schedules and chart progress on a particular project have facilitated the court's ability to allocate damages."

State of the Art Analysis & Presentation

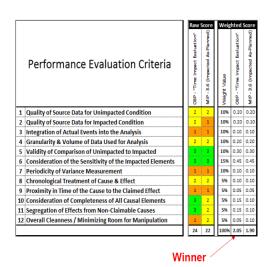

- Analysis of Delay
- As-Planned
- As-Built
- As-Impacted
- Zeroing-Out

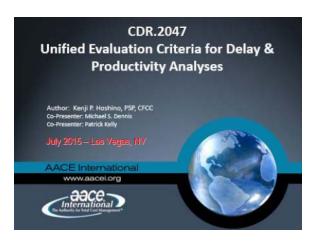

Relief From L/D's

Windows

Extended Overhead

Zeroing-Out Windows


Peer Review v AACE 29RP-03


Evaluation of FSA Methods in "CPM in Construction Management, 8th Ed."

Kenji P. Hoshino, PSP, CFCC

February 1, 2016 Construction CPM Conference New Orleans

OBP "TIE" vs MIP 3.6 (IAP)

OBP "Window" vs MIP 3.7 (TIA)

		Raw	Score	Weig	hted	Score
	Performance Evaluation Criteria	OBP - "Windows"	MIP - 3.7 (Time Impact Analysis)	Weight Value	OBP - "Time Impact Evaluation"	MIP - 3.7 (Time Impact Analysis)
1	Quality of Source Data for Unimpacted Condition	1	3	10%	0.10	0.30
2	Quality of Source Data for Impacted Condition	2	1	10%	0.20	0.10
3	Integration of Actual Events into the Analysis	1	1	10%	0.10	0.10
4	Granularity & Volume of Data Used for Analysis	2	2	10%	0.20	0.20
5	Validity of Comparison of Unimpacted to Impacted	3	2	10%	0.30	0.20
6	Consideration of the Sensitivity of the Impacted Elements	3	3	15%	0.45	0.45
7	Periodicity of Variance Measurement	1	3	10%	0.10	0.30
8	Chronological Treatment of Cause & Effect	2	2	5%	0.10	0.10
9	Proximity in Time of the Cause to the Claimed Effect	2	2	5%	0.10	0.10
10	Consideration of Completeness of All Causal Elements	3	2	5%	0.15	0.10
11	Segregation of Effects from Non-Claimable Causes	3	2	5%	0.15	0.10
12	Overall Cleanness / Minimizing Room for Manipulation	1	2	5%	0.05	0.10
		24	25	100%	2.00	2.15

Total Score

		П	Ra	w Sco	re	W	eighte	ed Sco	re	Per	lect
	Performance Evaluation Criteria		OSP - "Time Impact Saluation"	OBP - "Windows"	MIP - 3.4 (Iliturcated CPA)	Weight Value	OBP - "Time Impact Baluation"	OBP - "Windows"	MIP - 3.4 (Bifurcated CNA)	Tan.	Weighted
1	Quality of Source Data for Unimpacted Condition	1	2	1		10%	0.20	0.10	0.30	3	0.30
2	Quality of Source Data for Impacted Condition	H	2	2	2	10%	0.20	0.20	0.20	3	0.30
3	Integration of Actual Events into the Analysis	Ш	1	1	2	10%	0.10	0.10	0.20	3	0.30
4	Granularity & Volume of Data Used for Analysis	Ш	2	2	2	10%	0.20	0.20	0.20	3	0.30
5	Validity of Comparison of Unimpacted to Impacted	н	3	3	2	10%	0.30	0.30	0.20	3	0.30
6	Consideration of the Sensitivity of the Impacted Elements	Ш	3	3		15%	0.45	0.45	0.45	3	0.45
7	Periodicity of Variance Measurement	ш	1	1		10%	0.10	0.10	0.30	3	0.30
8	Chronological Treatment of Cause & Effect	П	2	2		5%	0.10	0.10	0.15	3	0.15
9	Proximity in Time of the Cause to the Claimed Effect	11	1	2	2	5%	0.05	0.10	0.10	3	0.15
10	Consideration of Completeness of All Causal Elements	Н		3	2	5%	0.15	0.15	0.10	3	0.15
11	Segregation of Effects from Non-Claimable Causes	Н	3		2	5%	0.15	0.15	0.10	3	0.15
12	Overall Cleanness / Minimizing Room for Manipulation	П	1	1		5%	0.05	0.05	0.15	3	0.15
		71	24	24	29	100%	2.05	2.00	2.45	16	3.00

Purpose: Compensable Delay & Rebuttal of LDs

•MIP 3.7 V	lows Analysis /ariable Period, Stati rtially updated basel act-modeled MIP 3.2	ine	<u>H</u> a	alf-Step	VS Update	e Analy:		OBP Time Impact Evaluation •Enhanced MIP 3.6.F •w/ 'Not-Quite' MIP 3.8 verification				
	Forensic Use of Analysis	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9		
	Non-Compensable Time Extension	OK	OK	OK	OK	OK	OK	OK	OK	OK		
	Compensable Delay	OK	OK	OK	OK	OK			OK	OK		
	Right to Finish Early Compensable Delay								OK	OK		
											I	

Completion Bonus

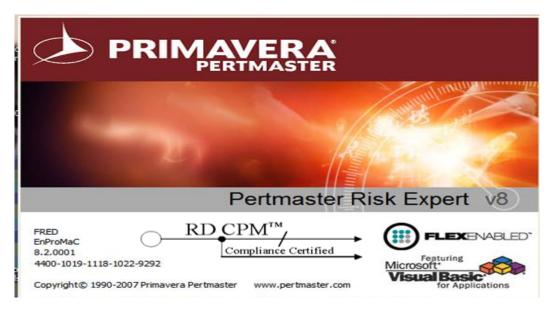
Project Delay

Constructive

RP 29R-03 - Section 5: Choosing a Method

OK OK

OK OK OK OK OK


OK OK OK OK OK OK

The AACEi compilation 29RP-03 is deemed by the authors of this text to document a number of, but clearly not all, methodologies that have been used in one trial setting or another. 29RP-03 does provide a number of tips to practitioners on source validation and on providing the operating parameters of a number of methodologies purported to have been accepted in at least one forum. However, the authors of this text believe that none of these approaches, as provided in 29RP-03, should pass a Daubert review,

Winner /

Add Probability and Risk

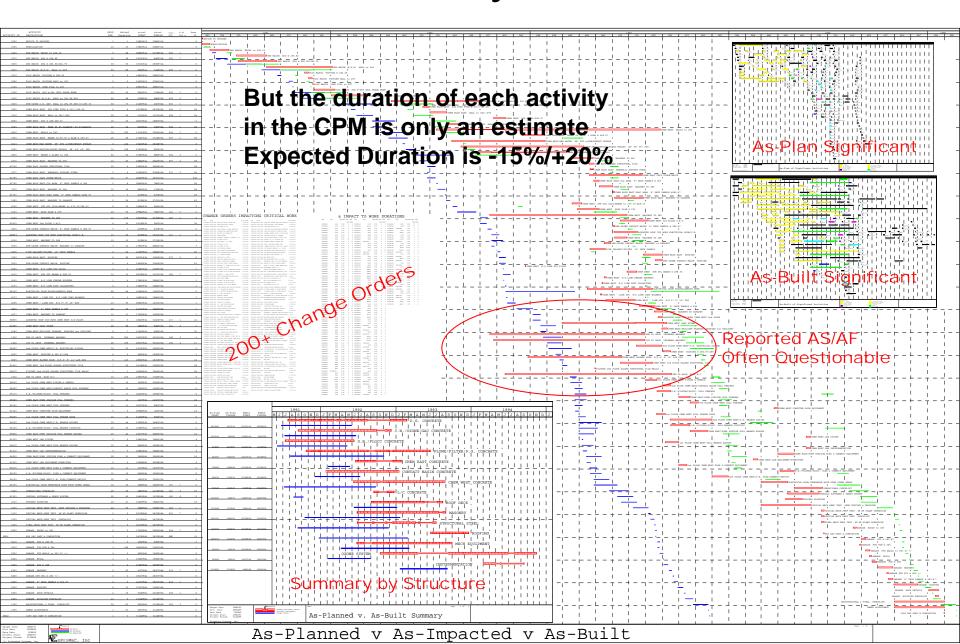
- Pertmaster Monte Carlo -15%/+20%
- Calculate probability of finish by set date
- Track alternate critical paths by frequency
- What was natural risk of project delay?

Risk in Scheduling? Where would I learn about that?

- MON12 Preparing a P6 schedule for Risk Analysis
- Presented by Darryl Townsend of DRMcNatty & Associates, Inc.
- MON13 Microsoft New Project and Portfolio Management Solution for Construction Project Management
- Managing cost, schedule, task updates, risks and collaboration across project stakeholders
- MON32 Schedule Risk Analysis doesn't have to be hard!
- All too often Schedule Risk Analysis (SRA) is only performed because it was required for a proposal. Once the contract is won SRA goes out the window. Where SRA is not mandated it may be ignored because it is perceived as a lot of effort for questionable return. This presentation will demonstrate the benefits of using SRA throughout the project life cycle and show that benefits can be achieved with little additional effort. Presented by John Owen, COO of Barbecana Inc.
- MON42 Doing a P6/Acumen Risk Analysis
- Presented by Darryl Townsend of DRMcNatty & Associates, Inc.
- **TUE13 Deltek Open Plan Download to 1st Update**
- This session will lead attendees from download of Open Plan software from Deltek's website, or from the link provided in the back of of the text CPM in Construction Management, 8th Edition, to delivery of the first update report to management of the Contractor and the Owner. Presented by Rob Edwards

Risk Ready – Risk Integral – Risk Add-On

Risk in Scheduling? Where would I learn about that?

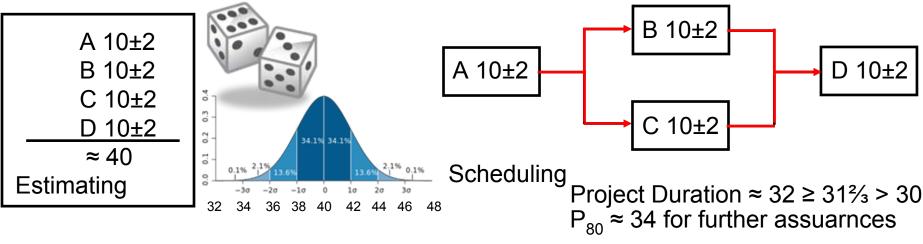

TUE14 - Safran Risk

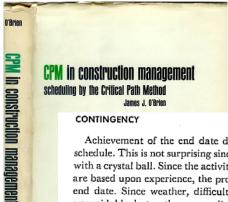
- Risk analysis tools can be complicated. The complex interfaces and lack of process support can leave you wondering about the quality of your risk analysis. Did you capture all of your risks? Did you build the model correctly? In this session, you'll learn how Safran Risk addresses these issues. You'll learn how the process-led interface provides confidence in your risk modeling process, and you'll learn new techniques for capturing all of your risks in the comprehensive risk register including risk factors (uncertainty), risk events, and risk calendars. You'll also learn how Safran Risk's best-in-class analytics can provide you quantified insight into how risks are impacting your project. Come see why Safran Risk is defining the new standard in schedule risk analysis. Presented by Wes Gillette Director of Client Services, Safran
- TUE17 Mitigating Delay Claims and Scheduling Best Practices
- Session addresses Claims and Risk Awareness, specifically as it related to construction scheduling. How to
 mitigate claims when construction change is inevitable. Learn about the principle causes of dispute and how to
 avoid claims as it relates to the project schedule function. Presented by Raquel Shohet, EI, PSP, of Hill
 International, with over 25 years of construction industry experience in the engineering, cost, scheduling,
 estimating, and field disciplines.
- TUE33 Deltek Acumen Risk: The Rewards of Schedule Risk Analysis
- CPM schedules are excellent at providing a completion forecast based on the planned duration and sequence of work. However, they fall short in accounting for external risk events those discrete events that have an impact on a project execution teams' ability to execute the plan. This presentation focuses on the second step towards improving project maturity: identifying and reducing project risk exposure through project risk analysis. Learn best practices when running a schedule or cost risk analysis and hear how Deltek Acumen Risk and Risk book combine the accuracy of Monte-Carlo risk analysis with a straightforward, team-oriented user experience to simplify this process. Presented by Tom Polen

Risk in Scheduling? Where would I learn about that?

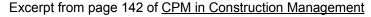
- TUE37a Who Should Own Float? Mitigating Delays by Float-Preallocation Method
- Float reduces risk by protecting against delays in network schedules. But who owns it remains a contentious issue. We will discuss the results of a National Science Foundation-funded research on allocating project float between the sum of raw durations and the contract deadline to the critical path. A mathematical model from social decision-making has inspired how to fairly allocate so that the critical participants can reach an evenly low risk level. Simulations validate the new approach. Presented by Gunnar Lucko, Associate Professor of Civil Engineering and Director of Construction Engineering and Management Program, Department of Civil Engineering, The Catholic University of America, Washington, DC 20064. lucko@cua.edu
- TUE44a Risky Project Project Risk Analysis and Risk Management Software
- RiskyProject is integrated project risk management and risk analysis software. RiskyProject facilitates all steps of
 project risk management process: risk identification, analysis, mitigation and response planning, and risk
 communication. RiskyProject performs both qualitative and quantitative risk analysis. It performs schedule and
 cost risk analysis using Monte Carlo simulations. RiskyProject's risk register includes all information about risks.
 These risks can be assigned to project schedule and used in risk analysis. Presented by Lev Virine of Risky Project
- TUE44b PMA Netpoint Risk
- WED13 Doing a P6/Acumen Risk Analysis
- Presented by Darryl Townsend of DRMcNatty & Associates, Inc.
- WED23 Project Risk Analysis with Risk Events Step by Step
- Efficiency of project risk analysis process depends on how project uncertainties are identified and modelled.
 Uncertainties in task durations and costs can be modelled using statistical distributions. Uncertainties can also be modelled using discrete risk events (threats, opportunities, or both), which can be assigned to the project tasks and resources. Presented by Lev Virine of Risky Project

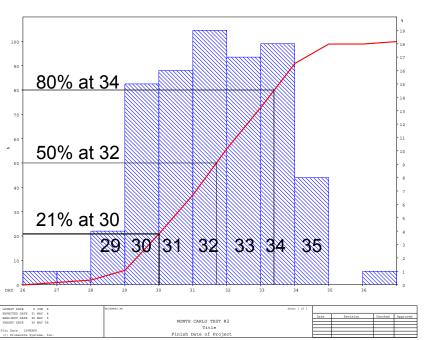
State of the Art Analysis & Presentation

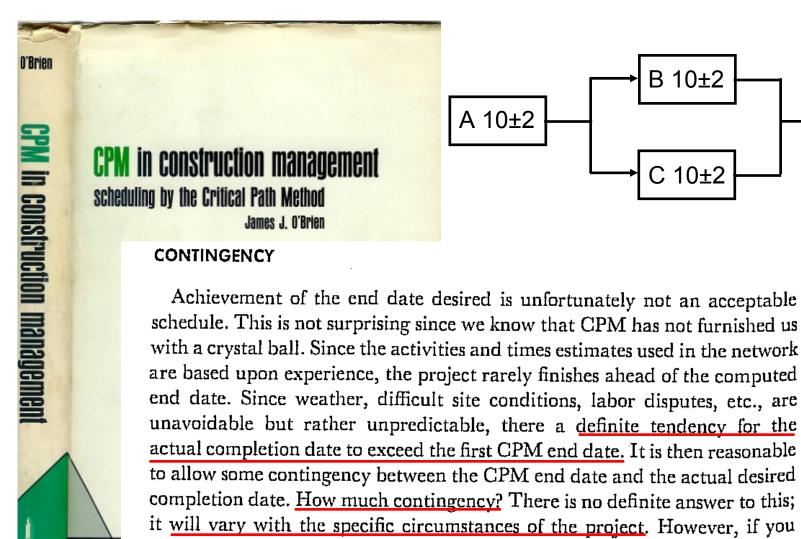



Intrinsic Unreliability of CPM

- Two Math Anomalies from Merge Bias
- $10 + 10 + 10 \neq 30$
- Leveled Schedule $\leq 2 \times Optimal Schedule$



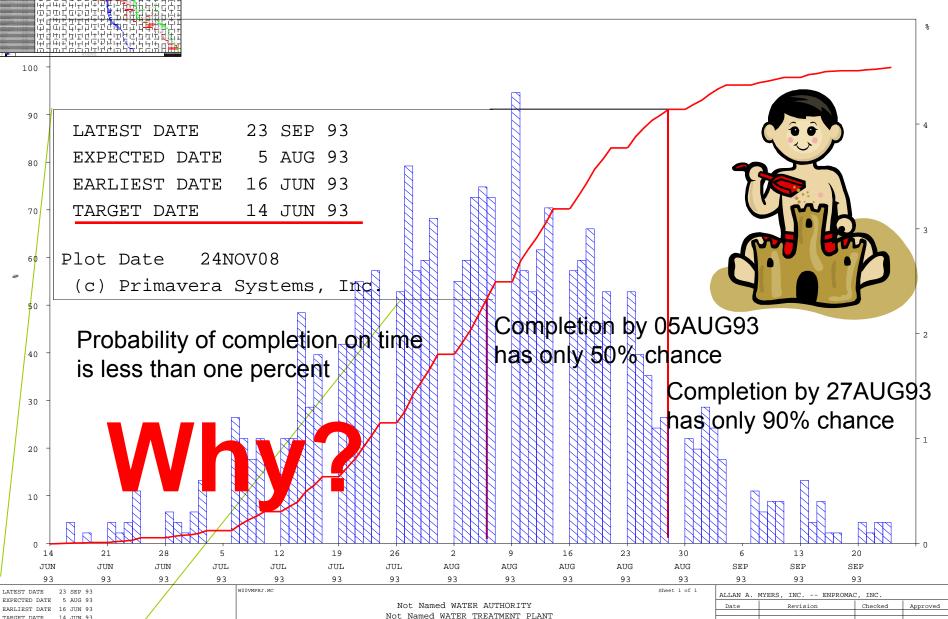

Risk and Monte Carlo Simulation



Achievement of the end date desired is unfortunately not an acceptable schedule. This is not surprising since we know that CPM has not furnished us with a crystal ball. Since the activities and times estimates used in the network are based upon experience, the project rarely finishes ahead of the computed end date. Since weather, difficult site conditions, labor disputes, etc., are unavoidable but rather unpredictable, there a definite tendency for the actual completion date to exceed the first CPM end date. It is then reasonable to allow some contingency between the CPM end date and the actual desired completion date. How much contingency? There is no definite answer to this; it will vary with the specific circumstances of the project. However, if you need a twelve-month completion, set your CPM goal at about eleven months, and so forth. Some people have been reluctant to set a flat contingency at the end of the schedule. Contingency can be buried in the activity estimates, but if it is you won't be able to separate true estimates from contingency.

need a twelve-month completion, set your CPM goal at about eleven months, and so forth. Some people have been reluctant to set a flat contingency at the

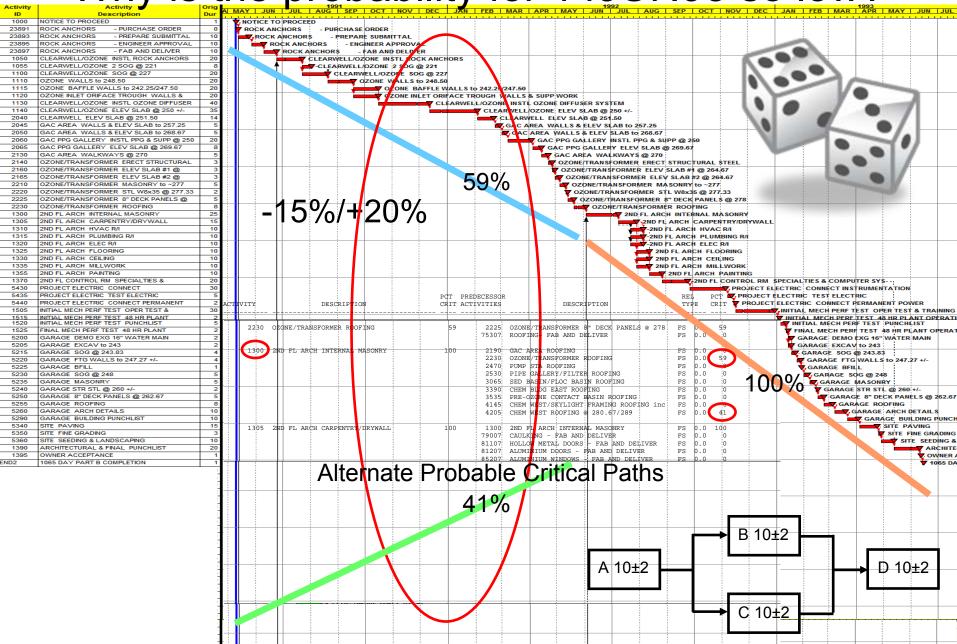
end of the schedule. Contingency can be buried in the activity estimates, but


if it is you won't be able to separate true estimates from contingency.

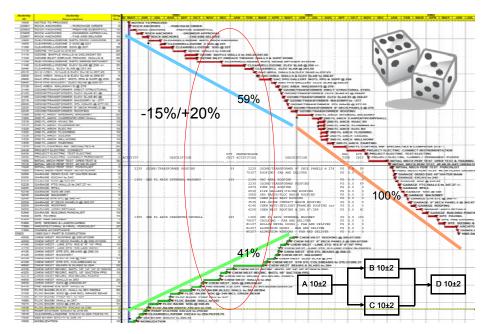
D 10±2

7603

Plot Date 24NOV08


State of the Art Analysis?

Initial Schedule Submittal (As-Planned)


Finish Date of Project

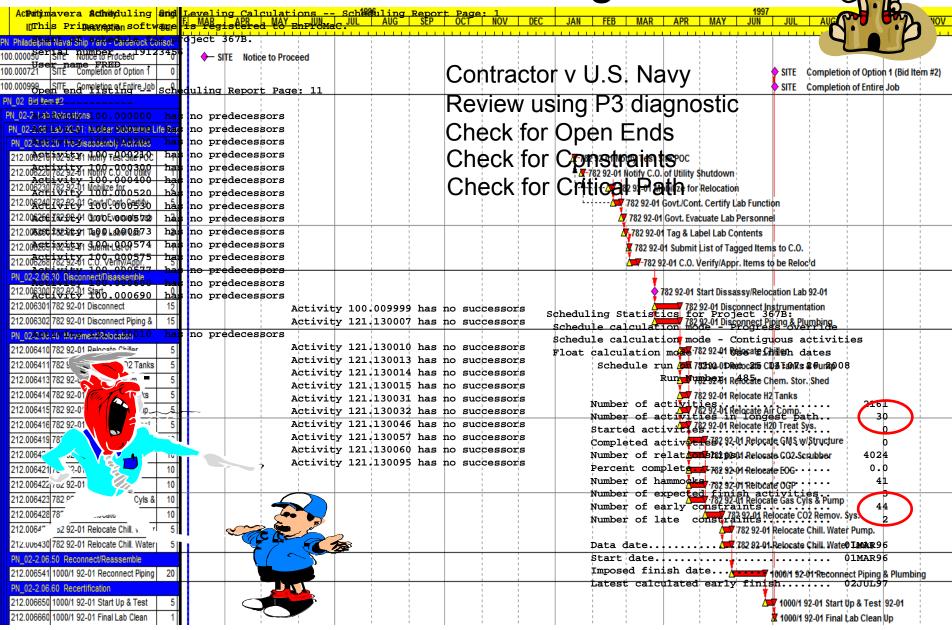

Why is the probability for 14JUN93 so low?

Evidence Issues for any CPM

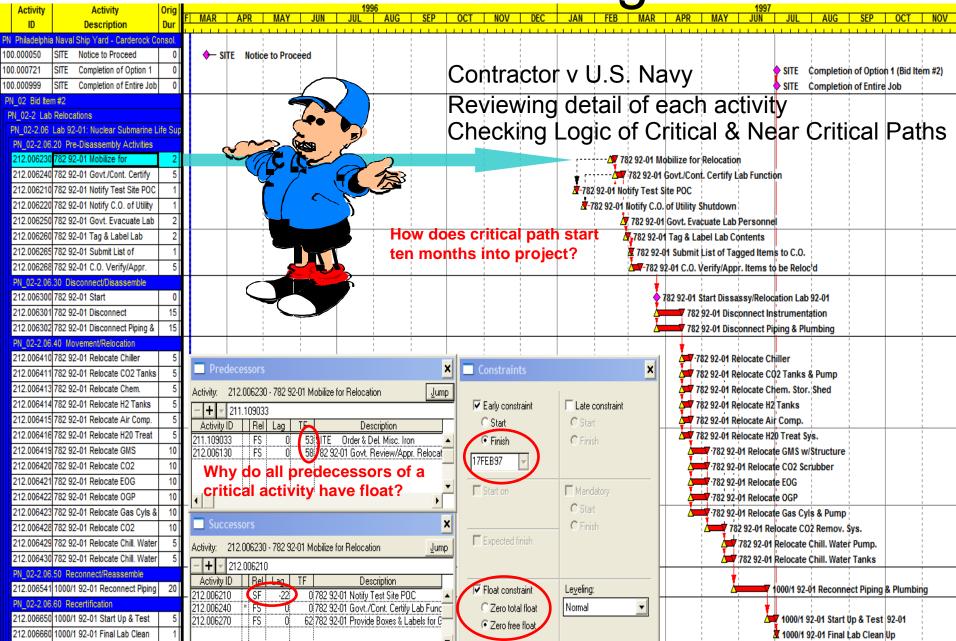
- CPM may be less certain than generally believed
- Certainty of the proffered CPM should be questioned
- Understanding of the "expert" relating to Risk is fair game

Specific Flaws of this CPM

- Frye Credential Test
- Daubert Theory Test
 Analytical Gap Test

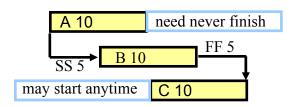

Specific Flaws of this CPM

- Is the As-Planned a CPM or only a bar-chart?
 - Logic network from one start end to one finish end no other open ends!
 - Every activity must have a physical methodology predecessor & successor
 - Activities Placed by Logic Restraints NOT Date Constraints
 - Proper Logic May Be Restated in "ADM" Finish-to-Start-no-Lag Format
 - Resource (PREFERENTIAL) Logic Not Probative for Delay Analyses
 - But how do we distinguish Physical from Resource Logic?

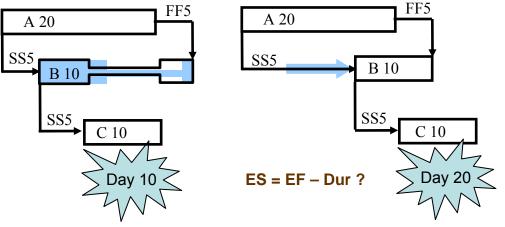


 How reliable is this CPM to establish a claim of delay or disruption?

As-Planned Logic?

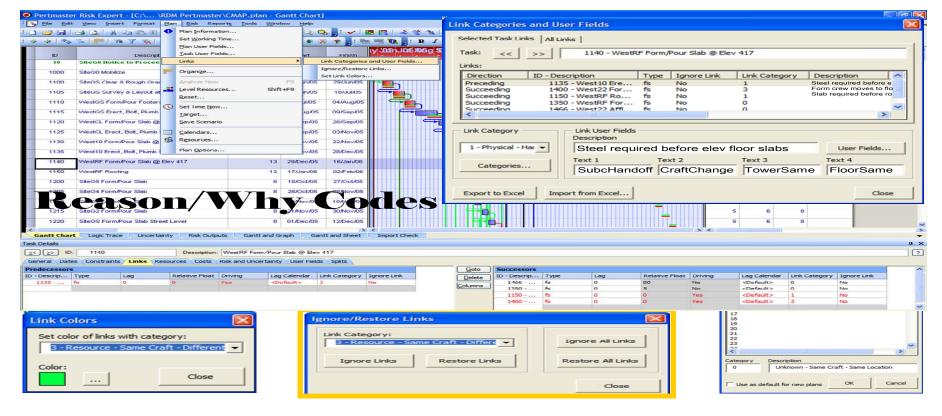


As-Planned Logic?

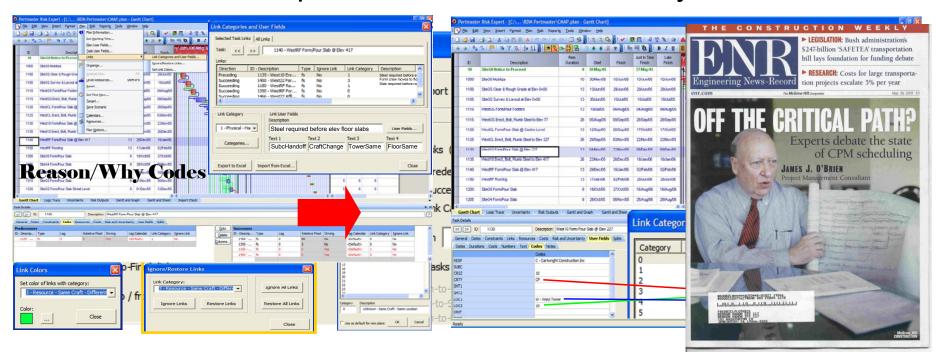

RDM Analysis of the As-Planned Logic

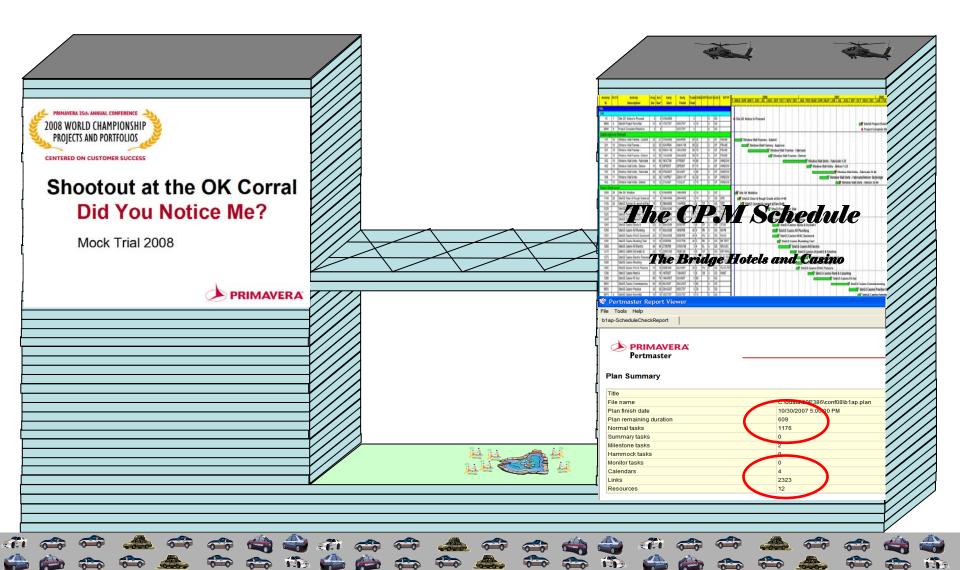
- check for hidden open ends
- check for misunderstood logic
- Interruptible supported by
 P3 Pertmaster Asta Phoenix

interruptible duration continuous duration



RDM Analysis of the As-Planned Logic


- check for hidden open ends
- check for misunderstood logic
- check for physical v resource logic



RDM Analysis of the As-Planned Logic

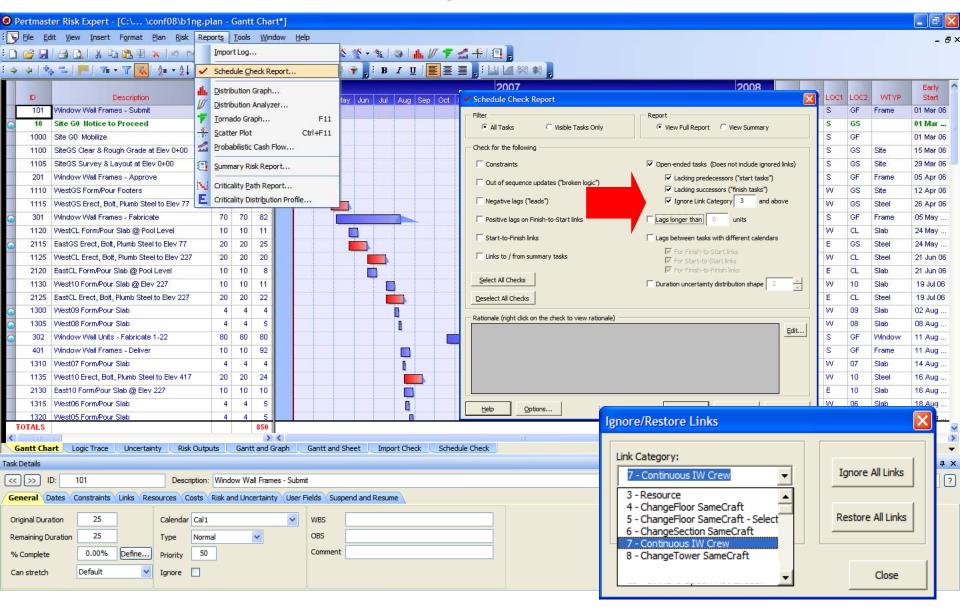
- check for hidden open ends
- check for misunderstood logic
- check for physical v resource logic
- check for physical-logic-only open ends
- check if the as-planned is a CPM or merely a bar-chart

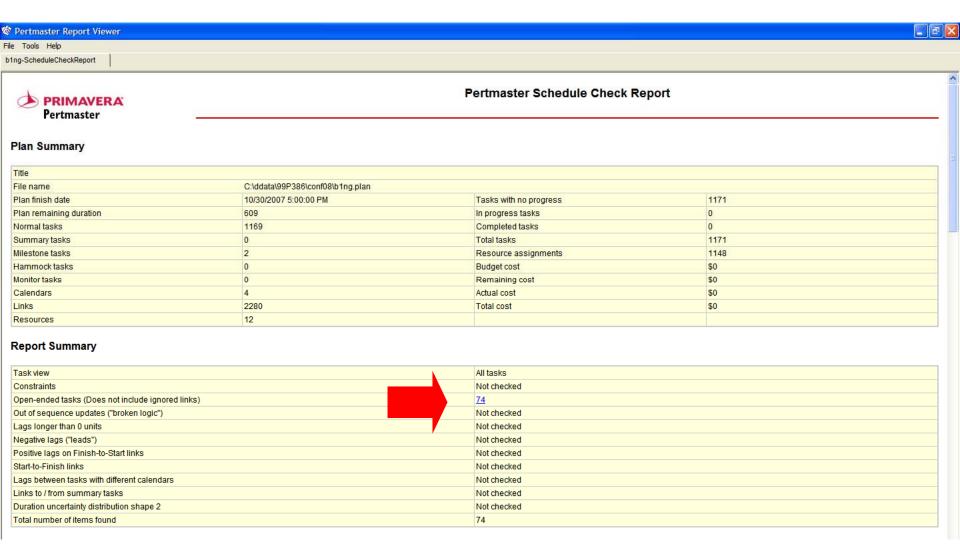
Our Example Today

Entitlement to Total Delay

Activity	PLT1	Activity	Rem	Act	Early	Early	Total	2006 2007 2008
ID ,		Description	Dur	Dur*	Start	Finish	Float	F MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR A
10	1	Site GO Notice to Proceed	0	0	01MAR06		0	Site G0 Notice to Proceed
E001	15	Event 001 - Delay to Mobilize	10	10	01MAR06	14MAR06	-10	Event 001 - Delay to Mobilize
E002	15	Event 002 - Window Frame Approval Takes 35 Days	35	35	30MAR06*	17MAY06	59	Event 002 - Window Frame Approval Takes 35 Days
E003	15	Event 003 - Ship Hijacked by Pirates	92	92	20SEP06*	25JAN07	-22	Event 003 - Ship Hijacked by Pirates
E004	15	Event 004 - Industry Strike by Dockworkers	30	30	01MAR07*	11APR07	42	Event 004 - Industry Strike by Dockworkers
E005	15	Event 005 - Window Connector Design Error - Requ	24	24	08MAY07*	08JUN07	15	Event 005 - Window Connector Design Error - Requ
E006	15	Event 006 - Skybridge Window Frame Refit / Refab	11	11	23MAY07*	06JUN07	-29	Event 006 - Skybridge Window Frame Refit / Refab
E007	15	Event 007 - Window Connector Design Error - Requ	24	24	06AUG07*	06SEP07	-49	Event 007 - Window Connector Design
9995	6	Project Complete Milestone	0	0		07JAN08	-69	→ Project Comple

Direct Examination


Testimony for the Contractor



- set the predicate for a proper CPM
 - every activity (other than first) must have a predecessor
 - every activity (other than last) must have a successor
 - if these rules not followed the logic network will have open ends
 - what is wrong with open ends?
 - this required logic must be methodology (physical), not just resource
 - non-physical resource restraint example crew from tower to tower
 - if non-physical resource restraints are removed more open ends?
- does CPM used for this analysis meet these criteria?

Cross-Examination

File Tools Help

b1ng-ScheduleCheckReport

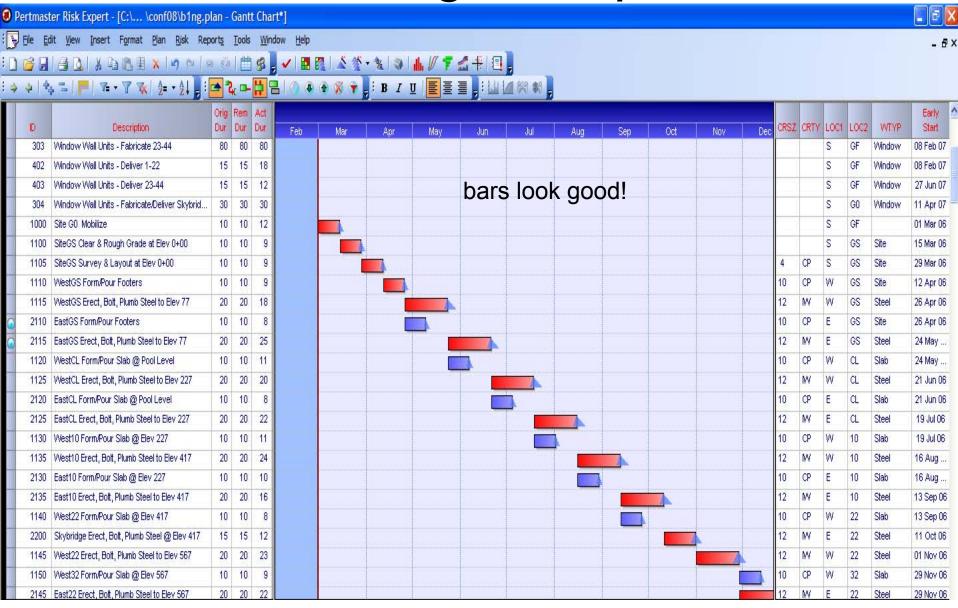
Bookmark ID

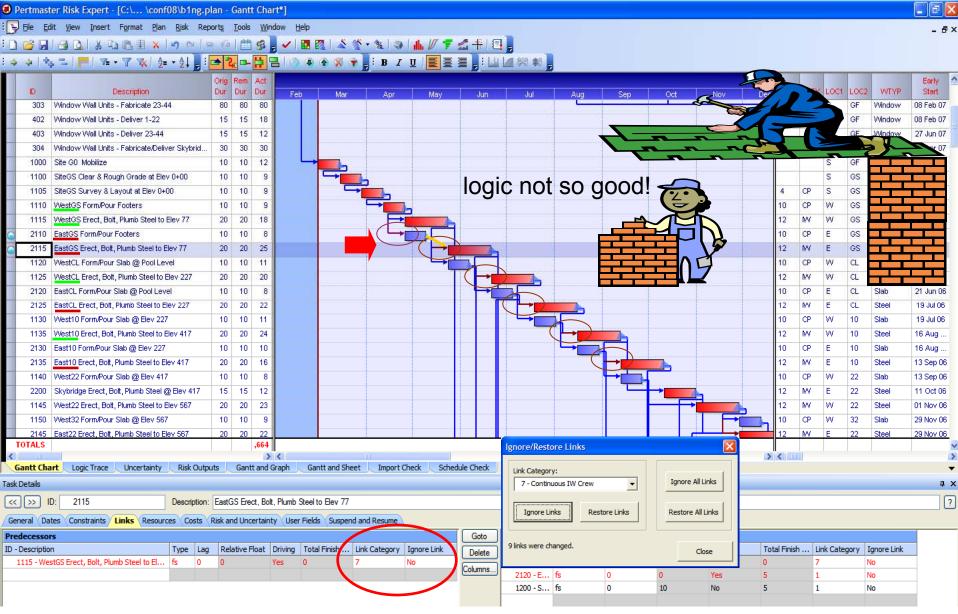
Open-ended tasks (Does not include ignored links) Options selected:Predecessors, Successors

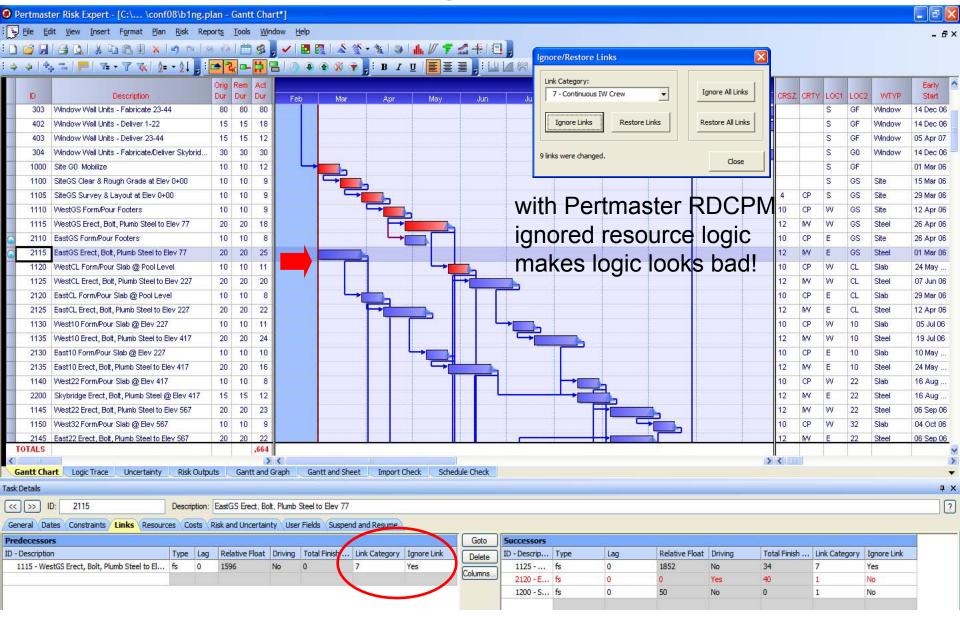
Description

Options selected.Fredecessors, Succes

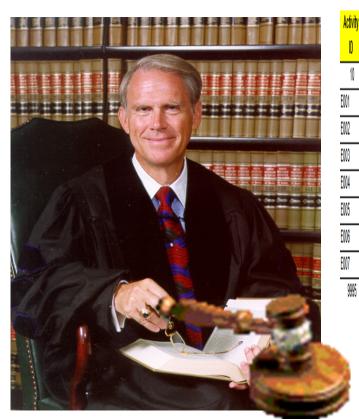
For a schedule risk analysis to be meaningful, it is important that tasks' dates are set by logic (e.g. Finish-to-Start links) rather than constraints. This is so that the risk analysis will recognize the knock-on effect of delays. An open-ended task is one that does not have at least one predecessor and one successor – it indicates a possible lack of logic. Consider closing open-ended tasks:


• If a task has no predecessor, try to find some other tasks which could potentially delay it. Leave it as open-ended if it is the project start milestone.

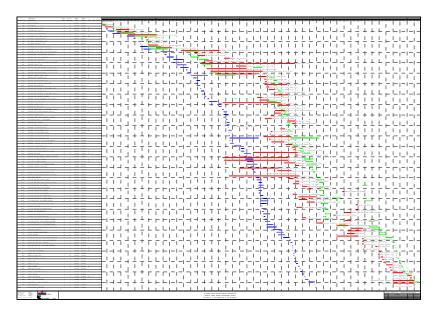

Remaining Duration Detail

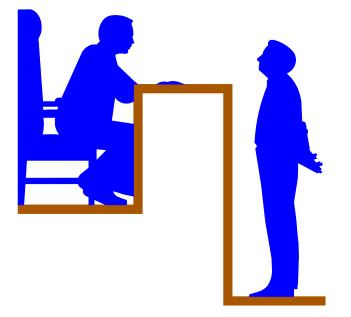

Type

- If a task has no successors, try to find some other tasks which it could potentially delay. Leave it as open-ended if it is a project finish or reporting milestone.


▽	1300	West09 Form/Pour Slab	Normal	4	Finish has no successors	
V	1305	West08 Form/Pour Slab	Normal	4	Finish has no successors	
V	2400	East21 Form/Pour Slab	Normal	4	Start has no predecessors	
V	1360	West03 Affix Window Wall Frames Floors 1-3	Normal	6	Finish has no successors	
✓	1460	West12 Affix Window Wall Frames Floors 10-12	Normal	6	Finish has no successors	
V	1470	West22 Affix Window Wall Units Floors 1-22	Normal	12	Start has no predecessors	
V	1362	West06 Affix Window Wall Frames Floors 4-6	Normal	6	Finish has no successors	
V	1364	West09 Affix Window Wall Frames Floors 7-9	Normal	6	Finish has no successors	
V	1364	West09 Affix Window Wall Frames Floors 7-9	Normal	6	Start has no predecessors	
V	1462	West15 Affix Window Wall Frames Floors 13-15	Normal	5	Finish has no successors	
V	1464	West18 Affix Window Wall Frames Floors 16-18	Normal	5	Finish has no successors	
V	2110	EastGS Form/Pour Footers	Normal	10	No successors	
V	2110	EastGS Form/Pour Footers	Normal	10	Start has no predecessors	
V	<u>2115</u>	EastGS Erect, Bolt, Plumb Steel to Elev 77	Normal	20	Start has no predecessors	
V	2360	East03 Affix Window Wall Frames Floors 1-3	Normal	6	Finish has no successors	
V	2362	East06 Affix Window Wall Frames Floors 4-6	Normal	6	Finish has no successors	
V	2364	East09 Affix Window Wall Frames Floors 7-9	Normal	6	Finish has no successors	
V	2410	East19 Form/Pour Slab	Normal	4	Start has no predecessors	
V	2415	East18 Form/Pour Slab	Normal	4	Start has no predecessors	
V	2420	East17 Form/Pour Slab	Normal	4	Start has no predecessors	
V	2425	East16 Form/Pour Slab	Normal	4	Start has no predecessors	
V	2430	East15 Form/Pour Slab	Normal	4	Start has no predecessors	
V	2435	East14 Form/Pour Slab	Normal	4	Start has no predecessors	
V	2440	East13 Form/Pour Slab	Normal	4	Start has no predecessors	
V	2445	East12 Form/Pour Slab	Normal	4	Start has no predecessors	
						V

Decision Time




Activity	PLT	Activity	Rem	Act	Early	Early	Total	2006 2007	2008
10		Description	Dur	Dur ^t	Start	Finish	Float	IMAR IAPR IMAY JUNI JULI AUG ISEP (OCT NOV DEC JANI FEB IMAR) APR IMAY JUNI JULI AUG ISEP (OCT NOV DEC JANI	I FEB MAR APR
10	1	Site GO Notice to Proceed	0	0	01NAR06		0	Site GN Notice to Proceed	
E001	15	Event 001 - Delay to Mobilize	10	10	01NAR06	14MAR06	-10	Tevent 001 - Delay to Mobilize	
E002	15	Event 002 - Window Frame Approval Takes 35 Days	35	35	30MAR06±	17MAY06	59	Event W2 - Window Frame Approval Takés 36 Days	
E003	15	Event 003 - Ship Hijacked by Pirates	92	92	20SEP06*	25JAN07	-22	Event 003 - Ship Hijacked by Pirates	
E004	15	Event 004 - Industry Strike by Dockworkers	30	30	01NAR07±	11APR07	42	Frient OA- Industry Strike by Dockworkers	
E005	15	Event 005 - Window Connector Design Error - Requ	24	24	08NAY07±	08JUN07	15	Event Wi5 - Window Connector Design Err	rdr - Relqu
E006	15	Event 006 - Skybridge Window Frame Refit / Refab	11	11	23MAY07*	06JUN07	-29	☐ Event M6 - Skybridge Window Frame Refi	t / Refab
E007	15	Event 007 - Window Connector Design Error - Requ	24	24	06AUG07±	06SEP07	-49	Event 007 - Window Con	nector Design Erro
9995	6	Project Complete Milestone	1	0		07JAN08	-69		roject Complete N

226

Evidence Issues for this CPM

- The As-Planned Schedule Logic may be flawed
- Distinguishing Methodology from Resource Logic is key
- Understanding of the "expert" relating to Logic is fair game

FOR THE PUBLIC

ME

NCES

Q&A

a copy of this slideshow may be downloaded at

www.rdcpm.com

for additional information email to

fplotnick@rdcpm.com

fplotnick@fplotnick.com